This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "math/matrix.hpp"#pragma once
#include "../template/template.hpp"
/**
* @brief Matrix (行列)
*/
template <typename T>
class Matrix {
private:
vector<vector<T>> data;
public:
Matrix() : Matrix(0) {}
explicit Matrix(int _h) : Matrix(_h, _h) {}
explicit Matrix(int _h, int _w) : data(_h, vector<T>(_w, T{})) {}
//! 単位行列
static Matrix identity(int s) {
Matrix res(s);
rep (i, 0, s) {
res.set(i, i, T(1));
}
return res;
}
int row() const {
return data.size();
}
int col() const {
return data.empty() ? 0 : data[0].size();
}
T get(int i, int j) const {
assert(0 <= i && i < row());
assert(0 <= j && j < col());
return data[i][j];
}
void set(int i, int j, const T v) {
assert(0 <= i && i < row());
assert(0 <= j && j < col());
data[i][j] = v;
return;
}
friend bool operator==(const Matrix& lhs, const Matrix& rhs) {
return lhs.data == rhs.data;
}
friend bool operator!=(const Matrix& lhs, const Matrix& rhs) {
return lhs.data != rhs.data;
}
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
assert(lhs.col() == rhs.row());
Matrix res(lhs.row(), rhs.col());
rep (i, 0, lhs.row()) {
rep (j, 0, rhs.col()) {
rep (k, 0, lhs.col()) {
res.set(i, j, res.get(i, j) + lhs.get(i, k) * rhs.get(k, j));
}
}
}
return res;
}
Matrix& operator*=(const Matrix& rhs) {
return *this = *this * rhs;
}
Matrix pow(ll y) const {
assert(row() == col());
assert(0 <= y);
Matrix res = identity(row());
Matrix x = *this;
while (y > 0) {
if ((y & 1) != 0) {
res *= x;
}
x *= x;
y >>= 1;
}
return res;
}
};
#line 2 "math/matrix.hpp"
#line 2 "template/template.hpp"
/**
* @author ku_senjan
* @title 提出用テンプレート
* @see https://github.com/kogetsu0728/ku-library
*/
#line 2 "template/constant.hpp"
#line 2 "template/include.hpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
using namespace std;
#line 2 "template/type_alias.hpp"
#line 4 "template/type_alias.hpp"
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T, bool REVERSE = false>
using heap = priority_queue<T, vector<T>, conditional_t<REVERSE, greater<T>, less<T>>>;
#line 5 "template/constant.hpp"
template <class T>
inline constexpr T INF = numeric_limits<T>::max() / 2;
inline constexpr array<int, 4> DY4 = {0, -1, 0, 1};
inline constexpr array<int, 4> DX4 = {1, 0, -1, 0};
inline constexpr array<int, 8> DY8 = {0, -1, -1, -1, 0, 1, 1, 1};
inline constexpr array<int, 8> DX8 = {1, 1, 0, -1, -1, -1, 0, 1};
inline constexpr char LF = '\n';
#line 2 "template/macro.hpp"
#line 5 "template/macro.hpp"
/**
* @see https://trap.jp/post/1224/
*/
#ifdef LOCAL
inline constexpr bool IS_LOCAL = true;
#else
inline constexpr bool IS_LOCAL = false;
#endif
#define IF_LOCAL if constexpr (IS_LOCAL)
#define all(a) begin(a), end(a)
#define rall(a) rbegin(a), rend(a)
#define overload4(a, b, c, d, e, ...) e
#define rep1(i, a) for (ll i = 0; (i) < (ll)(a); ++(i))
#define rep2(i, a, b) for (ll i = (ll)(a); (i) < (ll)(b); ++(i))
#define rep3(i, a, b, c) for (ll i = (ll)(a); (i) < (ll)(b); (i) += (ll)(c))
#define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(i, a) for (ll i = (ll)(a); (i) >= 0; --(i))
#define rrep2(i, a, b) for (ll i = (ll)(a); (i) >= (ll)(b); --(i))
#define rrep3(i, a, b, c) for (ll i = (ll)(a); (i) >= (ll)(b); (i) -= (ll)(c))
#define rrep(...) overload4(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__)
#line 13 "template/template.hpp"
#line 2 "utility/choose_min_max.hpp"
/**
* @title Choose Minimum / Maximum
*/
template <class T>
bool chmin(T& a, const T& b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#line 2 "utility/set_io.hpp"
#line 4 "utility/set_io.hpp"
void set_io(int d = 16) {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(d);
return;
}
#line 4 "math/matrix.hpp"
/**
* @brief Matrix (行列)
*/
template <typename T>
class Matrix {
private:
vector<vector<T>> data;
public:
Matrix() : Matrix(0) {}
explicit Matrix(int _h) : Matrix(_h, _h) {}
explicit Matrix(int _h, int _w) : data(_h, vector<T>(_w, T{})) {}
//! 単位行列
static Matrix identity(int s) {
Matrix res(s);
rep (i, 0, s) {
res.set(i, i, T(1));
}
return res;
}
int row() const {
return data.size();
}
int col() const {
return data.empty() ? 0 : data[0].size();
}
T get(int i, int j) const {
assert(0 <= i && i < row());
assert(0 <= j && j < col());
return data[i][j];
}
void set(int i, int j, const T v) {
assert(0 <= i && i < row());
assert(0 <= j && j < col());
data[i][j] = v;
return;
}
friend bool operator==(const Matrix& lhs, const Matrix& rhs) {
return lhs.data == rhs.data;
}
friend bool operator!=(const Matrix& lhs, const Matrix& rhs) {
return lhs.data != rhs.data;
}
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
assert(lhs.col() == rhs.row());
Matrix res(lhs.row(), rhs.col());
rep (i, 0, lhs.row()) {
rep (j, 0, rhs.col()) {
rep (k, 0, lhs.col()) {
res.set(i, j, res.get(i, j) + lhs.get(i, k) * rhs.get(k, j));
}
}
}
return res;
}
Matrix& operator*=(const Matrix& rhs) {
return *this = *this * rhs;
}
Matrix pow(ll y) const {
assert(row() == col());
assert(0 <= y);
Matrix res = identity(row());
Matrix x = *this;
while (y > 0) {
if ((y & 1) != 0) {
res *= x;
}
x *= x;
y >>= 1;
}
return res;
}
};